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ABSTRACT 20 

Purpose: To evaluate common modelling strategies in training load and injury risk research 21 

when modelling continuous variables and interpreting continuous risk estimates; and present 22 

improved modelling strategies. 23 

Method: Workload data were pooled from Australian football (n=2,550) and soccer 24 

(n=23,742) populations to create a representative sample of acute:chronic workload ratio 25 

observations for team sports. Injuries were simulated in the data using three pre-defined risk 26 

profiles (U-shaped, flat and S-shaped). One-hundred datasets were simulated with sample 27 

sizes of 1000 and 5000 observations. Discrete modelling methods were compared to 28 

continuous methods (spline regression and fractional polynomials) for their ability to fit the 29 

defined risk profiles. Models were evaluated using measures of discrimination (area under 30 

ROC curve) and calibration (Brier score, logarithmic scoring).  31 

Results: Discrete models were inferior to continuous methods for fitting the true injury risk 32 

profiles in the data. Discrete methods had higher false discovery rates (16-21%) than 33 

continuous methods (3-7%). Evaluating models using the area under the receiver operator 34 

characteristic (ROC) curve incorrectly identified discrete models as superior in over 30% of 35 

simulations. Brier and logarithmic scoring was more suited to assessing model performance 36 

with less than 6% discrete model selection rate. 37 

Conclusions: Many studies on the relationship between training loads and injury that have 38 

used regression modelling have significant limitations due to improper discretization of 39 

continuous variables and risk estimates. Continuous methods are more suited to modelling 40 

the relationship between training load and injury. Comparing injury risk models using ROC 41 

curves can lead to inferior model selection. Measures of calibration are more informative 42 

when judging the utility of injury risk models. 43 

Keywords: acute:chronic workload ratio; injury risk; ROC curves; calibration  44 
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INTRODUCTION 45 

One of the challenges for coaches, physical preparation practitioners, clinicians, and 46 

researchers in sports science and sports medicine is estimating the risk of injury during 47 

sporting competitions and training (1, 2). Relationships between training loads and injuries 48 

have been studied extensively in recent publications (2-14). Training load has been reported 49 

as a key injury risk factor in recent consensus statements (1, 15). Studies of training loads and 50 

injuries often model the relationships between continuous risk factors (e.g. cumulative load 51 

or acute:chronic workload ratio) and binary outcomes (injury or no-injury) (4-14). 52 

 53 

Discretization is the practice of transforming continuous data into discrete categories, and is a 54 

prevalent methodology in studies of training load and injury risk (4-10). Discretization 55 

methods in sports medicine research include median splits (5, 7), percentiles (5, 6, 13), z-56 

score categories (4, 7), and arbitrary bins (8-10). These methodologies have not been 57 

critically examined in the context of modelling training loads and injuries. Discretization of 58 

continuous covariates in risk models has been criticized in other fields (16-19). Discretization 59 

of a continuous risk factor into categories assumes that each individual within that category 60 

has equal risk. For example, if cumulative training load is split into low, medium and high 61 

categories using percentiles then it is assumed that each athlete in the high category has 62 

identical risk irrespective of how broad the category is (i.e. an athlete at the 67th percentile is 63 

considered to be at the same risk as one at the 99th percentile). This practice causes a loss of 64 

information because within-category variation is ignored (17). The loss of information lowers 65 

the statistical power of the study and may reduce the ability to detect relationships between 66 

variables, increasing the likelihood of a false negative result (17, 18, 20). Discretization can 67 

also lead to inflated false discovery rates (17, 18). It is common for studies using 68 

discretization to analyze results by choosing a reference category and making multiple 69 

comparisons to each other category, increasing the chance of finding a significant result (17). 70 

It has also been shown by Wainer et al. (21) that categorization of continuous variables can 71 

make trends appear in otherwise unrelated data if there is freedom to choose the boundaries 72 

of the categories. Modelling methods that allow risk factors to vary continuously such as 73 

cubic regression splines and fractional polynomials have therefore been advocated as 74 

appropriate alternatives to discretization for modelling non-linear risk profiles in 75 

epidemiology (16, 20). 76 

 77 
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The increase in studies investigating training load as a risk factor for injury has been 78 

accompanied by an increase in studies exploring injury prediction (5, 11, 12, 14, 22, 23). 79 

Injury prediction models have been evaluated and compared using metrics such as sensitivity, 80 

specificity or area under the receiver operator characteristic curve (AUC) (5, 11, 12, 14, 22, 81 

23). These scoring metrics are designed to evaluate binary predictions (i.e. injury or no-82 

injury) and look at how often the model predictions match the actual outcomes (24). In a 83 

practical setting, where there is a clinician or coach to synthesize other sources of information 84 

to make a contextualized judgement, a model would not be expected to make a yes/no 85 

decision. In this scenario it could be more informative to evaluate injury risk models using 86 

measures of calibration (19, 25). Calibration refers to how well a model is able to estimate 87 

the probability of an event (24). 88 

 89 

In this study we critically evaluated the modelling and evaluation methodologies found in the 90 

existing literature on the relationships between training load and injury. Training load data 91 

collected from Australian football (6) and soccer (26) were used to generate a set of 92 

hypothetical datasets with known injury risk profiles (27). Discrete risk models using z-score, 93 

percentile, and arbitrary binning methods (4-10) were compared to continuous methods; 94 

regression splines and fractional polynomials (16, 20). Models were evaluated using 95 

measures of discrimination (AUC) and calibration (Brier score) to assess which metrics were 96 

the most informative for assessing the utility of risk models (24). 97 

 98 

METHODS 99 

Training load data 100 

The acute:chronic workload ratio (ACWR) is a relative training load variable calculated by 101 

dividing an athlete’s acute workload (typically 1 week) by their chronic workload (typically 4 102 

weeks) (2, 27). It is a bounded continuous variable that has been studied extensively as an 103 

injury risk factor (2-14). ACWR data were pooled from two studies on separate male 104 

populations; a two season study at a single Australian Football club (6) (n = 2550), and a two 105 

season study of 17 soccer teams in the Qatar Stars League (26) (n = 23742). One week acute 106 

and four week chronic periods (overlapping) were used for both data sets. Total distance was 107 

used as the load variable in the Australian football data set and training/match duration in the 108 

soccer data set (the only available load metric). Combined, these data had a mean and 109 

standard deviation of 1.05 and 0.42; similar to values reported in previous studies (5, 7, 8) 110 

(see Figure, Supplemental Digital Content 1, histogram of ACWR values). The pooling of 111 
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data from independent sources was done to ensure the distribution of values used in the 112 

simulations was as representative as possible (i.e. it is a good approximation of what a 113 

researcher could expect to collect in a hypothetical future study). Alternate ACWR 114 

calculation methods that use exponentially weighted averages (28) or de-couple the acute and 115 

chronic time windows (29) have been proposed. These modifications likely change the 116 

distribution of ACWR values (e.g. de-coupling causes the ACWR to become unbounded). 117 

Despite this, each method still produces a continuous variable and the investigation into the 118 

effects of discretization in this study remain relevant irrespective of the ACWR calculation 119 

method. Ethical approval for this study was obtained from the Shafallah Medical Genetics 120 

Centre, Approval number: 2012–017 and the La Trobe University Faculty of Health Sciences 121 

Human Ethics Committee (FHEC14/233). Informed consent was obtained from the 122 

participating teams for the analysis of de-identified data. 123 

 124 

Injury risk profiles 125 

Traditional research designs collect data and build models in an attempt to estimate the true 126 

relationship between variables of interest (e.g. ACWR and injury). In order to evaluate 127 

different modelling approaches we have used a different strategy. Artificial injuries were 128 

inserted into existing training load data based on pre-defined risk profiles. This enabled us to 129 

compare different models based on how well they were able to recover the true relationship 130 

in the data. Three pre-defined theoretical risk profiles were considered (figure 1). 131 

 U-shaped: To align with the hypothesized relationship between ACWR and injury (2, 132 

27), with minimum risk corresponding to ACWR = 1. 133 

 Flat: To represent the null hypothesis that ACWR does not influence injury risk 134 

(every observation poses a uniform 5% injury risk). 135 

 S-shaped: An alternative risk profile that has injury risk as constant (2%) for ACWR 136 

< 1 then rises sharply to very high injury risk. 137 

Details on the mathematical form of risk curves can be found in the supplementary text (see 138 

text, Supplemental Digital Content 2, equations of risk profiles). 139 

 140 
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 141 

Figure 1: Theoretical risk profiles used to simulate injuries. 142 

 143 

Simulating study data 144 

To examine the outcomes of different modelling approaches we simulated hypothetical new 145 

studies using the data collected from Australian football and soccer (6, 26). The simulation 146 

procedure was: 147 

 Choose a sample size (Ns) and randomly choose Ns observations of ACWR from the 148 

pooled data distribution (see Figure, Supplemental Digital Content 1, histogram of 149 

ACWR values). 150 

 Assign an injury probability (pi) to each observation using one of the pre-defined 151 

theoretical risk profiles (figure 1). 152 

 Randomly generate injuries by treating each observation as a Bernoulli trial with 153 

probability of injury pi. Simply, this means for an observation with injury risk of 20% 154 

we randomly assigned it an injury or no-injury label with probability 0.2 and 0.8 155 

respectively. 156 

We considered study sizes of 1000 and 5000 observations (representing a single season or 157 

multi-season study in team sport) and three different risk profiles (U-shaped, flat and S-158 

shaped). For each of these six combinations we simulated 100 studies to estimate the 159 

variability in any results. Simulations were performed using the R statistical computing 160 

language (30). An implementation of the simulation procedure is included in the 161 

supplementary code (see text, Supplemental Digital Content 3, simulation code). 162 

 163 

Training load – injury models 164 

Two types of modelling approach were considered; discrete and continuous. Discrete models 165 

were defined as those that applied a discretization strategy to the ACWR values before 166 
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modelling them against injury incidence. We considered three different discretization 167 

methods to reflect those found in the existing literature (4, 5, 7-10, 13). 168 

 D1: Normalize ACWR values (z-score) then split into 7 categories using cut-points: 169 

{-∞, -2, -1, 0, 1, 2, 3, ∞} (4, 7). 170 

 D2: Split into 5 quantiles (5, 6, 13). 171 

 D3: Split the ACWR into 5 categories using the cut-points: {0, 1, 1.35, 1.5, 2, ∞} 172 

(10). 173 

Following discretization, ACWR was modelled against injury incidence using binary logistic 174 

regression, with the central group used as the reference level. This method of analysis 175 

replicates that commonly used in previous studies (8-10, 13).  176 

 177 

To contrast the discrete models, two continuous modelling methodologies (C1 and C2) were 178 

considered. The continuous methods apply a transformation to the independent variable 179 

(ACWR) within the logistic regression. This allows for non-linear relationships that vary 180 

continuously to be modelled. 181 

 C1: Restricted cubic splines model relationships by subdividing the range of values 182 

of the covariate (at locations called knots), and fitting a cubic polynomial between 183 

each pair of knots. The polynomials are constrained to join smoothly at each knot and 184 

to be linear in the two outermost regions (19). Restricted cubic splines are a common 185 

method of analysis in epidemiological studies of nonlinear dose-response 186 

relationships (16, 19, 20). Spline models were fitted in R using the splines package 187 

(30). Spline regression models were constructed with three internal knots placed at 188 

equally spaced percentiles (19, 20). The number of knots was chosen a-priori in this 189 

study but in general can be chosen by comparing multiple options using an objective 190 

criterion (e.g. Akaike information criterion (AIC)) (19). 191 

 C2: Fractional polynomials are a flexible method of modelling nonlinear, 192 

continuous relationships. Fractional polynomials consider a combination of candidate 193 

functions and select a final model after a series of tests for nonlinearity and 194 

complexity (31). A potential benefit of fractional polynomials over cubic splines is 195 

that they are more interpretable. The final model can be described by a closed form 196 

equation and offers potential insight into the underlying relationship. Their drawback 197 

is that they are a global model (i.e. they fit the entire range of data with a single 198 
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function), and therefore cannot fit local features as well as splines. Fractional 199 

polynomial models were fitted in R using the mfp package (30, 32). 200 

Presently, few studies of the relationship between ACWR and injury have used modelling 201 

methods that allow for non-linear trends and avoid discretization of the ACWR. An 202 

implementation of each modelling method considered is included in the supplementary code 203 

(see text, Supplemental Digital Content 3, simulation code). 204 

 205 

Each of the models (discrete and continuous) were used to produce estimates of injury risk 206 

for each ACWR observation in the simulated data sets. This replicates a study design from a 207 

team sport environment where workload risk factor and injury outcomes are recorded daily. 208 

 209 

Evaluating injury models 210 

Comparison between true and modelled risk curves 211 

A direct comparison can be made between the modelled risk profile and the true risk profile 212 

in this study because the function used to simulate the injuries was pre-defined (i.e. it is 213 

exactly known, as shown in figure 1). Root mean square error (RMSE) (24) was calculated 214 

for the difference between the true risk and predicted risk for each observation in each 215 

simulated study. This provides a measure of how well the modelling procedure was able to 216 

recover the true risk profile used to generate the data. 217 

 218 

False discovery and false rejection rates 219 

The flat injury risk profile was used to estimate the false discovery rate for each modelling 220 

approach (figure 1). Data simulated under the flat profile contained no association between 221 

ACWR and injury risk. Therefore, any simulated study finding a significant relationship in 222 

the data could be considered a false discovery (Type I error). Significance testing for discrete 223 

models (D1, D2, D3) was performed by comparing the reference ACWR level to all other 224 

levels in the discretized ACWR (4, 5, 7-10, 13). A simulation was deemed to have a 225 

significant finding if any of the 95% confidence intervals for the odds ratios did not contain 226 

1. Significance testing for spline regression (C1) and fractional polynomials (C2) was 227 

performed by comparing to a null model using the likelihood ratio test with α=0.05 (32). 228 

 229 

False rejection rates (Type II error) were estimated for each model by counting the number of 230 

times no significant result was found when the data were simulated with a U-shaped or S-231 
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shaped risk profile. Discretizing continuous variables causes a decrease in statistical power 232 

(17, 18), potentially causing the false rejection rates of discrete models to increase. 233 

 234 

Receiver operator characteristic 235 

The area under the receiver operator characteristic (AUC) has been used to evaluate 236 

predictive models of training load and injury in previous studies (5, 11, 12, 14). The AUC 237 

measures the ability of the model to discriminate between the two outcome classes (injury 238 

and no-injury). It has been used as a way to select the best performing injury prediction 239 

model in studies comparing multiple methods (11, 12, 14, 23). Cross validation (10-fold) was 240 

used to obtain estimates of AUC for each simulated study. Without some kind of resampling 241 

or out-of-sample testing the results can be positively biased (i.e. they will be better than could 242 

be expected in practice) (24). 243 

 244 

Calibration 245 

Calibration is a measure of how well a model is able to estimate the probability of an event. It 246 

can be assessed visually by constructing calibration curves (19, 33). Calibration curves show 247 

how closely the predicted probabilities match the observed event rates (i.e. for observations 248 

estimated to have injury risk of 20% - was the actual injury incidence rate on those days 249 

around 20%?). Calibration can also be assessed quantitatively by computing the Brier score 250 

or logarithmic scoring rule (19). In the case of a binary outcome variable the Brier score is 251 

calculated as the square of the probability assigned to the incorrect class (e.g. if the model 252 

predicts injury with probability 0.2, and there wasn’t an injury, the Brier score would be 0.22 253 

= 0.04, but if there was an injury then the score would be 0.82 = 0.16). A lower Brier score 254 

indicates a better model. The logarithmic scoring rule is evaluated by taking the natural 255 

logarithm of the probability assigned to the correct class (e.g. a predicted injury probability of 256 

0.2 and no injury would score log(0.8) = -0.22, and if there was an injury would score 257 

log(0.2) = -1.61). A higher score indicates better probability estimates. Logarithmic scoring 258 

may be more appropriate than the Brier score in the case of rare event estimation (34). Brier 259 

and logarithmic scores were estimated for each model and simulated study using 10-fold 260 

cross validation (24). 261 

 262 

Longitudinal models of training loads and injury 263 

For clarity of message in the previous sections we have simulated ACWR and injury data 264 

with no correlation structure and used logistic regression assuming independence of 265 
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observations to illustrate the effects of discretization. However, training load monitoring data 266 

collected from sporting teams often consists of repeated measurements taken from the same 267 

athletes. It is therefore possible that the observations from the same athletes will be 268 

correlated. To investigate the effects of this correlation on injury risk modelling we simulated 269 

longitudinal training load data sets using the SimCorMultRes package (35) (see text, 270 

Supplemental Digital Content 3, simulation code). Injuries were simulated in the data by 271 

defining a marginal risk profile and specifying a within-subject correlation strength (35). 272 

Four longitudinal data sets were simulated (100 times each) to investigate the effects of 273 

different sample sizes, within-subject correlations and marginal risk profiles. The first 274 

simulated 50 observations from 20 participants with a U-shaped marginal risk (figure 1) and 275 

a within-subject correlation of 0.1. The second increased the correlation strength to 0.7. The 276 

third considered a larger sample size of 100 observations from 50 participants. The fourth 277 

considered the effect of reducing the strength of the marginal risk by reducing the injury risk 278 

by a factor of ½ for each ACWR value. 279 

 280 

Each longitudinal data set was analyzed using naïve logistic regression (i.e. assuming 281 

independence of observations) and generalized estimating equations (GEE) (36). GEE 282 

models have been used in previous studies of training load and injury (5, 12, 14). GEE 283 

models were fitted using the R package geepack (37) using a binomial link and exchangeable 284 

working correlation structure. Both analysis methods allowed for the relationship between 285 

ACWR and injury risk to vary continuously using restricted cubic splines (as previously 286 

described). Modelling approaches were compared for their ability to recover the pre-defined 287 

marginal effect of ACWR on injury risk using RMSE. Additionally, significance testing was 288 

performed for each simulated study result by comparing to a null model using a likelihood 289 

ratio test (see text, Supplemental Digital Content 3, simulation code). 290 

 291 

RESULTS 292 

Simulated studies 293 

Details of the simulated studies (injury summary statistics) are found in supplementary table 294 

1 (see Table, Supplemental Digital Content 4, simulated injury statistics). 295 

 296 

Comparison between true and modelled risk profiles 297 

A visual inspection of how well each modelling procedure was able to recover the true risk 298 

profile used to generate the data is shown in figure 2. It is clear that models that discretized 299 
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the ACWR (figure 2(D1-3)) are unable to fully capture the U-shaped relationship. 300 

Continuous modelling methods C1 (spline regression) and C2 (fractional polynomials) fared 301 

much better at fitting the true risk profile (see Figures, Supplementary Digital Content 5, S-302 

shaped risk, and Supplemental Digital Content 6, flat risk). 303 

 304 

 305 

Figure 2: Comparison of 100 simulated study results (Ns = 5000 and U-shaped risk) analyzed using 306 

discrete models (D1, D2, D3) and continuous models (C1, C2). Solid line represents the true risk 307 

profile used to generate the data and each grey line represents one simulated study result. 308 

 309 

The RMSE performance of each modelling strategy under the different simulation parameters 310 

is shown in figure 3. Continuous modelling methods (C1, C2) had noticeably lower RMSE 311 

for data generated using a U or S-shaped injury risk profile (particularly in larger simulated 312 

studies with Ns = 5000). The difference between discrete and continuous methods was less 313 

pronounced for the flat injury risk profile. In general, the total error and variance in error for 314 

each model tended to decrease when the simulated sample size increased from 1000 to 5000 315 

observations. 316 

 317 
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 318 

Figure 3: Root mean square error of model probability estimates for 100 trials of each theoretical risk 319 

profile and sample size (red bar = median). 320 

 321 

False discovery rates 322 

Discrete modelling methods had higher false discovery rates than continuous methods (figure 323 

4). For 100 simulated studies with flat injury risk profile (i.e. no relationship in the data) and 324 

5000 observations, discrete models (D1, D2, D3) had false discoveries 21, 16 and 16 times 325 

respectively. The continuous methods had false discovery rates of 7/100 and 3/100 for C1 326 

and C2 respectively. Alarmingly, in the 100 simulated studies we found that at least one of 327 

the three discrete methods had a false discovery 42 times. 328 

 329 
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 330 

Figure 4: False discovery rates (out of 100 simulated studies with Ns = 5000 and flat risk profile). 331 

 332 

Choice of reference level 333 

Discretizing the ACWR then running a logistic regression introduces another choice into the 334 

modelling procedure when the reference level is chosen by the researcher. There has been 335 

little consistency in existing studies, with the lowest (10, 13), highest (8), and central ACWR 336 

interval (5) being used. This freedom of choice is an issue because it can change the reported 337 

findings. For example, using discrete model D1 and a flat risk profile; 11/100 simulations had 338 

a false discovery if the highest interval was used as the reference but if the central interval 339 

was used this increased to 21/100 false discoveries. Avoiding discretization and modelling a 340 

continuous relationship removes this choice. 341 

 342 

False rejection rates 343 

Discrete methods (D2, D3) had higher false rejection rates when data were simulated with U-344 

shaped or S-shaped risk profiles (see Table, Supplemental Digital Content 7, false rejection 345 

rates). For data sets with 1000 observations and a U-shaped risk relationship, 59 and 57/100 346 

simulated studies did not find a significant result when analyzed using discrete methods D2 347 

and D3 respectively. The false rejection rate was much lower when using methods D1 348 

(5/100), C1 (12/100) or C2 (19/100). As expected, increasing the sample size from 1000 to 349 

5000 observations reduced the false rejection rates for each modelling approach (see Table, 350 

Supplemental Digital Content 7, false rejection rates). 351 

 352 

Receiver operator characteristics 353 
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Area under the ROC curve was estimated for each of the 100 simulated studies using 10-fold 354 

cross validation (24). The continuous analysis methods had higher median AUC values but 355 

did not clearly outperform discrete methods under this evaluation metric. If AUC was used to 356 

select the best performing model in each simulation we found that one of the discrete models 357 

was chosen on 38/100 and 31/100 occasions for U-shaped and S-shaped risk respectively 358 

(table 1). 359 

 360 

Table 1: Comparison of model selection rates using area under the ROC curve (AUC), Brier score and 361 

logarithmic scoring as the evaluation metric (Ns = 5000). 362 

Method 

ID 

Number of times selected as best model (/100 simulated studies) 

U-shaped risk S-shaped risk 

AUC Brier Logarithmic AUC Brier Logarithmic 

D1 28 6 3 15 0 1 

D2 2 0 0 0 0 0 

D3 8 0 0 16 0 0 

C1 35 80 70 26 73 75 

C2 27 14 27 43 27 24 

 363 

Calibration 364 

To compare with ROC curves, Brier and logarithmic scores were estimated for each model 365 

using 10-fold cross validation (19, 24). When the Brier score was used to select the best 366 

performing model in each simulation, discrete models were chosen on only 6/100 and 0/100 367 

occasions for U-shaped and S-shaped risk respectively (table 1). When logarithmic scoring 368 

was used the rates were 3/100 and 1/100. Brier and logarithmic scoring favored the 369 

continuous methods far more than evaluation with ROC curves. 370 

 371 

Calibration curves offer a way to visually evaluate injury risk models (figure 5). A calibration 372 

curve shows the relationship between the predicted probabilities and actual event occurrence 373 

rate (perfect calibration is represented by the diagonal line). An exemplar set of calibration 374 

curves are shown in figure 5 (one simulated study with U-shaped risk and Ns = 5000). Ideally 375 

a well calibrated risk model will have a curve that is close to the diagonal line and covers a 376 

large range of probabilities (i.e. has confidence in identifying both high and low risk 377 
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scenarios). Discrete model D2 provided little information other than the baseline injury rate. 378 

Model D3 did not appear to be well calibrated. Models D1, C1 and C2 were well calibrated 379 

(close to diagonal line) however the continuous methods covered a much larger range of 380 

probabilities. 381 

 382 

 383 

Figure 5: Comparison of cross-validated calibration curves from a single simulated study (Ns = 5000 384 

and U-shaped risk) analyzed using discrete (D1, D2, D3) and continuous models (C1, C2). Diagonal 385 

line represents perfect calibration and shaded area represents 95%CI. 386 

 387 

Longitudinal data models 388 

GEE and naïve logistic regression models had similar ability to recover the marginal effect in 389 

each simulated longitudinal data set (table 2). Median RMSE values were near identical for 390 

each approach. Increasing the sample size (100 observations from 50 participants) lowered 391 

the median RMSE values whilst increasing the within-participant correlation strength 392 

increased the median RMSE (table 2). 393 

 394 

Table 2: Comparison of logistic regression and GEE modelling for longitudinal data. 395 

Marginal 

risk profile 

Study size 

(observations 

x participants) 

Correlation 

strength 

Significant results 

(/100) 

Median RMSE (IQR) 

Logistic GEE Logistic GEE 
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U-shaped 50 x 20 0.1 84 95 

0.020 

(0.013-0.025) 

0.021 

(0.014-0.025) 

U-shaped 50 x 20 0.7 86 97 

0.030 

(0.024-0.037) 

0.028 

(0.021-0.035) 

U-shaped 100 x 50 0.1 100 100 

0.009 

(0.007-0.012) 

0.009 

(0.007-0.011) 

U-shaped 

(dilated ½) 

50 x 20 0.1 53 82 

0.013 

(0.011-0.017) 

0.014  

(0.011-0.017) 

 396 

The naïve logistic regression approach (assuming independence of observations) had higher 397 

false rejection rates (i.e. lower statistical power) than the GEE approach (table 2). The 398 

difference in false rejection rates became more pronounced when the strength of relationship 399 

between ACWR and injury risk was decreased (47/100 for logistic vs. 18/100 for GEE). 400 

Using a larger sample size caused the false rejection rate to drop to zero for both methods. 401 

Increasing the strength of within-participant correlation did not have a strong effect on false 402 

rejection rates. 403 

 404 

DISCUSSION 405 

Discrete versus continuous modelling strategies 406 

Discrete models showed limited ability to capture the risk profiles used to generate the 407 

simulation data (figure 2-3). Discretization forced the models to fit an unrealistic and 408 

discontinuous step profile to the data (figure 2 and Supplemental Digital Content 5, S-shaped 409 

risk). This illustrates how discretization of continuous risk factors can lead to inaccurate 410 

estimation of effects (17, 20). Figure 2 shows how using percentile splits (method D2) groups 411 

a large range of ACWR values together and provides an inaccurate estimated effect that is far 412 

lower than the true risk for ACWR values greater than 2. Similarly, the ACWR categories 413 

used in method D3 assume homogeneity of risk over the range 0 to 1 leading to an estimated 414 

effect that cannot capture the rise in risk seen for small ACWR values. Our simulations 415 

suggest that the discrete methods found in the current literature (4-8, 10, 13) are unsuited to 416 

modelling the continuous U-shaped risk profile between ACWR and injury proposed in the 417 

literature (2, 27). 418 

 419 
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Continuous modelling methods (spline regression and fractional polynomials) were better 420 

suited to fitting the non-linear risk profiles (U-shaped and S-shaped) and provided more 421 

accurate estimated effects. This was demonstrated by lower RMSE scores (figure 3) and also 422 

confirmed visually by the 100 simulations shown in figure 2. These findings align with 423 

recommendations from other fields that continuous modelling methods are preferable to 424 

discretization (17, 20). Future studies may benefit from using continuous modelling methods 425 

instead of discretizing continuous training load variables when analyzing their relationship to 426 

injury. 427 

 428 

False discovery rates 429 

Data generated under the assumption that ACWR had no relationship to injury risk (figure 1, 430 

flat risk profile) was used to estimate the false discovery rate for each modelling approach. 431 

False discovery rates were inflated by using discrete models (16-21%) (figure 4). Splitting 432 

the ACWR into multiple categories before modelling leads to multiple comparisons between 433 

groups and may explain the higher false discovery rates (17, 18). Discrete method D1 used 434 

the most categories (7 groups) and had the highest false discovery rate (21%). A secondary 435 

issue was the choice of reference level when categorical predictors are used in generalized 436 

linear models (e.g. logistic or Poisson regression). Discrete model D1 had 21/100 false 437 

discoveries when the central ACWR category was used as the reference but only 11/110 if 438 

the highest was used. 439 

 440 

There is currently no consensus in the literature regarding the discretization strategy or choice 441 

of reference level when modelling ACWR and injury risk (5, 8, 10, 13). The apparent 442 

freedom of choice of discretization and reference level may have caused highly inflated false 443 

discovery rates in previous studies (38). When a choice of only three methods was considered 444 

in our simulations false discovery rates were as high as 42% (figure 4). Continuous modelling 445 

methods do not require choosing a reference level and do not suffer from multiple 446 

comparisons between predictor categories. Spline regression and fractional polynomials had 447 

substantially lower false discovery rates (7% and 3%). 448 

 449 

False rejection rates 450 

Models that transformed the continuous ACWR into discrete categories showed higher false 451 

rejection rates in the simulated studies (see Table, Supplemental Digital Content 7, false 452 

rejection rates). This aligns with findings from other studies that discretization lowers 453 
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statistical power (17, 18, 20). Simulations using a larger sample size (Ns=5000) were not as 454 

prone to false rejections, highlighting the benefits of larger sample sizes. The negative 455 

consequences of discretization on statistical power are particularly relevant for research in 456 

elite sport cohorts where sample sizes are often constrained. 457 

 458 

Evaluating injury risk models 459 

ROC curves 460 

Comparing models using the area under the ROC curve did not always identify that 461 

continuous methods were better fits to the risk profiles (table 1). RMSE scores showed that 462 

continuous methods were clearly superior when modelling U-shaped or S-shaped risk profiles 463 

when a sample size of 5000 observations was used (figure 3). Despite this, AUC incorrectly 464 

identified discrete methods as superior in 38 and 31/100 simulations for U and S-shaped risk 465 

(table 1). This suggests that using AUC as the sole evaluation metric when selecting injury 466 

prediction models (11, 12, 14) runs the risk of selecting an inferior model. 467 

 468 

A ROC curve is constructed by sampling through the possible decision thresholds that could 469 

be applied (i.e. cut points where the models makes an injury or no-injury prediction). This 470 

may not realistically represent the purpose of the model if it to be used for risk estimation. If 471 

the output of the model is used along with context and clinical judgement, and not required to 472 

make a binary decision, then AUC may not be an appropriate evaluation metric (25). ROC 473 

curves also assume that false positive errors and false negative errors are of equal 474 

consequence (39). This is likely not the case when a false negative means an injured athlete 475 

and a false positive may be a modified or missed training session. We suggest that ROC 476 

curves in isolation are insufficient to evaluate the performance of injury prediction models. 477 

 478 

Probabilistic scoring and calibration curves 479 

Evaluating the modelling strategies with Brier scores and logarithmic scoring strongly 480 

favored the continuous models (table 1). Discrete models were selected in only 6/100 and 481 

0/100 simulations using the Brier score and 3/100 and 1/100 when using logarithmic scoring. 482 

These provide a much closer reflection of the RMSE scores (ground truth) than evaluating 483 

models with AUC. The Brier and logarithmic scores are probabilistic scoring rules designed 484 

to evaluate probability estimates (19) and are therefore better suited to assessing injury risk 485 

models. We suggest that Brier scores, logarithmic scoring, or another comparable 486 

probabilistic scoring rule (34) be included in future studies to compare injury risk models. 487 
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 488 

Calibration curves (figure 5) provided an informative visualization of the performance of 489 

injury risk models (33). They showed how closely the risk estimates of each model matched 490 

the observed injury rates and how well each model discriminated between high and low risk 491 

instances. Figure 5 clearly shows that continuous models gave more informative probability 492 

estimates (closer to the observed event rates and over a larger range of values) than the 493 

discrete models. Calibration curves show absolute risks and thus may be a more important 494 

result for clinicians and decision makers (40). 495 

 496 

Longitudinal models 497 

Extending the simulation study to include correlated within-individual observations showed 498 

the negative effects of incorrectly assuming independence between repeated measurements. 499 

The naïve logistic regression approach had higher false rejection rates than a GEE approach 500 

(table 2). Assuming independence can cause the standard errors for time varying covariates to 501 

be overestimated  (41) and may have been the cause of the inflated false rejection rates. 502 

When the strength of the ‘signal’ in the data was decreased the difference between logistic 503 

and GEE approaches became more pronounced, and the naïve logistic approach had very 504 

high false rejection rate (47/100). This highlights the importance of accounting for correlated 505 

observations when modelling longitudinal training load data, particularly if the expected 506 

strength of signal in the data is small. 507 

 508 

Both longitudinal modelling approaches showed similar ability to recover the true marginal 509 

risk profile. This is likely because the parameter estimates from logistic regression and GEE 510 

models are generally very similar (41). In all simulations, larger sample sizes improved the 511 

accuracy of model estimated effects, suggesting the potential benefits of collaborative studies 512 

with large sample sizes. 513 

 514 

Limitations and extensions 515 

Restricted cubic spline regression and fractional polynomials were considered as the 516 

alternative modelling methods in this study. Although they are common approaches for 517 

modelling non-linear relationships (16, 20) they are not the only possible approaches. A 518 

number of other non-parametric and semi-parametric methods may have been suitable (e.g. 519 

locally weighted regression, generalized additive models, and smoothing splines) (19). 520 

 521 
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We did not consider multivariable modelling and used only a single covariate (ACWR) in our 522 

simulations. This was done for clarity of the message. The issues caused by discretization are 523 

equally problematic in multivariable modelling. Spline and fractional polynomial techniques 524 

can still be used when there is more than one covariate to allow for proper modelling of 525 

continuous variables (19, 32). For example, recent studies have investigated the effect of 526 

ACWR on injury risk moderated by absolute chronic workload dichotomized using a median 527 

split (4, 5, 7). This dichotomization removes a significant amount of variation in the data, 528 

leading to decreased statistical power and inaccurate estimation of effects (17, 20). It is 529 

possible, and we would suggest more appropriate, to avoid discretization and model both risk 530 

factors continuously using a technique such as restricted cubic surfaces (19). This study did 531 

not consider time-to-event approaches for modelling training loads and injury (e.g. survival 532 

analysis and cox regression (42)). Discretization of baseline or time-varying covariates can 533 

have similar consequences on statistical power and estimated effects in these contexts and 534 

continuous approaches are advised (19). 535 

 536 

CONCLUSION 537 

Modelling methods that discretize continuous risk factors are inappropriate for studying the 538 

relationship between training loads and injuries. Discrete models have inflated false 539 

discovery and false rejection rates and are unsuited to fitting non-linear risk profiles. Strong 540 

justification is required for research that chooses a discrete approach and we suggest avoiding 541 

discretization and modelling relationships with continuous methods such as spline regression 542 

or fractional polynomials. Accounting for correlated observations in longitudinal training 543 

data decreases the risk of false rejection. Evaluating injury risk models using ROC curves 544 

may not reflect their practical use and may lead to inferior model selection. Probabilistic 545 

scoring methods such as Brier scores, logarithmic scoring and calibration curves may be 546 

more informative when assessing injury models. 547 
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Supplemental digital content 663 

 664 

[SDC1 - Supplemental Figure 1.pdf] Supplemental figure 1: Histogram showing 665 

distribution of ACWR values (pooled from two existing studies) used to simulate training 666 

load datasets. 667 
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SUPPLEMENTAL DIGITAL CONTENT 2: Equations of theoretical risk profiles. 669 

 670 

U-shaped: 671 

Pr⁡(𝑌𝑖 = 1|𝑅𝑖 = 𝑟𝑖) = 𝑙𝑜𝑔𝑖𝑠𝑡𝑖𝑐(⁡{

−3.4 + 2 ∙ (1 − 𝑟𝑖)
2, 𝑟𝑖 < 1

−3.4 + (1 − 𝑟𝑖)
2, 1 ≤ 𝑟𝑖 < 1.7

1.5 ∙ 𝑟𝑖 − 5.4, 𝑟𝑖 ≥ 1.7

⁡) 672 

Where r is the ACWR, Y is an indicator variable for injury occurrence and logistic is the 673 

standard function: 674 

𝑙𝑜𝑔𝑖𝑠𝑡𝑖𝑐(𝑥) =
1

1 + 𝑒−𝑥
 675 

Flat:  676 

Pr⁡(𝑌𝑖 = 1|𝑅𝑖 = 𝑟𝑖) = 0.05 677 

S-shaped:  678 

Pr(𝑌𝑖 = 1|𝑅𝑖 = 𝑟𝑖) = {
0.02, 𝑟𝑖 < 1.3

𝑙𝑜𝑔𝑖𝑠𝑡𝑖𝑐(3.5 ∙ (𝑟𝑖 − 1.3) − 3.89), 𝑟𝑖 ≥ 1.3
 679 

 680 

 681 

[SDC2 - Supplemental Text.docx] Supplementary text: Equations of theoretical risk 682 

profiles. 683 

  684 
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SUPPLEMENTAL DIGITAL CONTENT 4 685 

Supplementary Table 1: Results of 100 trials for each combination of sample size and risk 686 

profile. 687 

Sample size Risk Profile Mean number of simulated injuries (range) 

1000 

U-shaped 43.47 (29 – 66) 

Flat 50.43 (33 – 72) 

Threshold 42.00 (26 – 60) 

5000 

U-shaped 217.73 (172 – 247) 

Flat 251.37 (214 – 283) 

Threshold 211.50 (177 – 251) 

 688 

[SDC4 - Supplemental Table 1.docx] Supplementary table 1: Results of 100 trials for each 689 

combination of sample size and risk profile. 690 

  691 
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 692 

[SDC5 - Supplemental Figure 2.pdf] Supplementary figure 2: Comparison of 100 simulated 693 

study results (Ns = 5000 and S-shaped risk profile) analysed using discrete models (D1, D2, 694 

D3) and continuous models (C1, C2). Solid line represents the true risk profile used to 695 

generate the data. 696 
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 698 

[SDC6 - Supplemental Figure 3.pdf] Supplementary figure 3: Comparison of 100 simulated 699 

study results (Ns = 5000 and a flat risk profile) analysed using discrete models (D1, D2, D3) 700 

and continuous models (C1, C2). Solid line represents the true risk profile used to generate 701 

the data. 702 

  703 



30 

 

SUPPLEMENTAL DIGITAL CONTENT 7 704 

Supplementary Table 2: False rejection rates for discrete and continuous modelling 705 

approaches. 706 

Sample 

characteristics 

False rejection rate (/100) 

D1 D2 D3 C1 C2 

U-shaped 

(Ns=1000) 
5 59 57 12 19 

U-shaped 

(Ns=5000) 
0 4 0 0 0 

S-shaped 

(Ns=1000) 
0 2 16 0 0 

S-shaped 

(Ns=5000) 
0 0 0 0 0 

 707 

[SDC7 - Supplemental Table 2.docx] Supplementary table 2: False rejection rates for 708 

discrete and continuous modelling approaches. 709 

 710 


