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Modelling continuous variables:



Modelling continuous variables:

the dangers of DIGERETISATIAN




Discretisation = transforming continuous - discrete



Discretisation = transforming continuous - discrete

“...split by percentiles...”
“...split into equal groups...”
“...values 1SD above the mean were classified as high...”
“...median split...”

“...categorised based on z-score...”



What did we do?

Used the study of training loads and injury to illustrate the
issues caused by discretisation



Acute:chronic workload ratio (ACWR) vs injury

\

Continuous variable Binary outcome



Acute:chronic workload ratio (ACWR) vs injury

\

Continuous variable Binary outcome

Lots of previous studies looking at the same relationship
Lots of different modelling strategies



What we did:

e Got a large sample of workload data from AFL (n = 2,550) and soccer (n = 23,742)
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What we did:

* Simulated a data set of 5000 observations by randomly drawing from the sample

A hypothetical future study



What we did:

So we can also look at variability in results

e Simulated a data set of 5000 observations (100 times)




What we did:

 Artificially inserted injuries in the data following a known injury risk shape



What we did:

* Analysed the data using:
e 3 x discretisation methods
e 2 x continuous methods



What we did:

* Analysed the data using:
e 3 x discretisation methods

. compared the results
e 2 x continuous methods }



Analysis methods



Analysis methods

Discrete

e D1: z-score categories
e D2: Percentiles

e D3: Arbitrary cut points



Analysis methods

Discrete Continuous
e D1: z-score categories e C1: Restricted cubic splines
* D2: Percentiles e C2: Fractional polynomials

e D3: Arbitrary cut points



Analysis methods

Discrete Continuous
e D1: z-score categories e C1: Restricted cubic splines
* D2: Percentiles e C2: Fractional polynomials

e D3: Arbitrary cut points

Have not been used in training load
and injury studies

All have been used multiple times in
existing literature



Scenario 1: U-shaped risk
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Scenario 1: U-shaped risk
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100 data sets following
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Results

How well could each analysis method
recover the true relationship?

Injury risk

Acute:chronic workload ratio



z-score categories
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Injury risk
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Injury risk
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Discretisation forces the All of these 3 have
models to try and fit an

been used in
unrealistic step profile / previous studies
\ z-score categories
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Injury risk
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Injury risk
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Take home message 1

Discretisation can hide the real
relationships in your data



Take home message 1

Discretisation can hide the real
relationships in your data

[don’t waste all of your hard earned data by chopping up your variables]



Scenario 2: Flat risk
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Scenario 2: Flat risk
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Results

What fraction of the 100 simulated studies
find a significant result?
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Discrete models had high false
discovery rates (10-20%)



Number of false discoveries (/100)
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Continuous models were better
(remember around 5% is expected)



Number of false discoveries (/100)
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Number of false discoveries (/100)

If you try a few binning methods | think you are
nearly guaranteed of getting a significant result
(even if there is explicitly nothing)
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Take home message 2

Discretisation can increase the
false positive rate



Take home message 2

Discretisation can increase the
false positive rate

[don’t fool yourself by chopping up your variables]



But in practice we don’t
know the true risk shape

(how can we tell which model is best?)

Acute:chronic workload ratio



Typical evaluation metrics

* Sensitivity
* Specificity
* Likelihood ratio

e ROC curves and AUC



Typical evaluation metrics

Sensitivity

Specificity

Likelihood ratio

ROC curves and AUC

These all rely on discretisation of probabilities

Probabilities are
continuous



Instead of discrete thresholds —
we should be looking at calibration and employing
probabilistic reasoning



Instead of discrete thresholds —
we should be looking at calibration and employing
probabilistic reasoning
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Are the probabilities well calibrated?

Does it rain on approx. 20% of the days the weather

model predicts 20% chance of rain.




18

Are the probabilities well calibrated?

Did injuries occur on approx. 20% of the days the

injury model predicts 20% chance of injury.




What happens it we evaluate models
with different metrics?

VS
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Number of times selected as best model (/100 simulated studies)

Evaluating using ROC

curves leads to picking AUC

discrete models as best

in 38/100 simulations DI 28
D2 2
D3 8
Cl 35

C2 27




Number of times selected as best model (/100 simulated studies)

AUC
DI 28
D2 2
D3 8
Cl 35
C2 27
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Number of times selected as best model (/100 simulated studies)

DI 28 6
D2 2 0
D3 8 0
Cl 35 80

C2 27 14 \

Probabilistic (continuous)
scoring rules hardly ever
rank the discrete models as
better




Take home message 3

Avoid discrete scoring metrics

(AUC, Sensitivity, Specificity, Youden Index, ...)

for risk probability models



This is important — we may be missing a lot!
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v Could be used to manage injury risk
* Mean AUC=0.61
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Predictive Modelling of Training Loads and Injury in
Australian Football

Carey, D. L, Ong, K.:, Whiteley, R.j, Crossley, K. M. j, Crow, J." I, Morris, M. E'

Predictive performance was only marginally better than chance
for models of non-contact and non-contact time-loss injuries

(AUC<0.65)

Injury prediction models built using training load data from a

single club showed poor ability to predict injuries when
tested on previously unseen data
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Despite association, the acute:chronic work load ratio does not predict non-contact
injury in elite footballers
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The ROC curve (Figure 1), the values AUC (90% CI) and the J
for each load marker (Table 2) showed

poor predictive ability of injury (AUC: 0.55-0.60)
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Workload and non-contact injury incidence in elite
football players competing in European leagues

The AUC were 0.56 (4-weeks absolute workload), 0.56
(3-weeks), 0.54 (2-weeks) and 0.53 (1-week), respectively

No A:C workload combination was appropriate to predict injury
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Section: Original Investigation

Article Title: Greater Association of Relative Thresholds Than Absolute Thresholds With
Noncontact Lower-Body Injury in Professional Australian Rules Footballers: Implications
For Sprint Monitoring
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Model accuracy for all workload thresholds and training
variables were classed as low (AUC = 0.48-0.61).
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on-contact

* Training load — injury models typically have low AUC
« Bad at predicting yes/no injury

« But that’'s not what we should be focussing on
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Research Pendulum

* Too many researcher degrees of freedom
* Very high risk of false positive results
* Inflated claims of prediction



Research Pendulum

* Not enough degrees of freedom

e Evaluating binary classification
performance (Sens, Spec, ROC)

* Showing what the model can’t do



Research Pendulum

* Be careful with choice of metrics (ACWR issues)
* Don’t discretise

* Don’t assume linear

* Don’t test for binary prediction

* Are the probability estimates useful?

* Simplify



s Journal of Clinical Epidemiology
_E AR Volume 110, June 2019, Pages 12-22
ELSEVIER —

Eeview

A systematic review shows no performance benefit
of machine learning over logistic regression for
clinical prediction models

Evangelia Christodoulou 2, Jie Ma b, Gary 5. Collins ® © Ewout W. Steyerberg 9, Jan Y. Verbakel > &, Ben Van Calster
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To summarise:



It you discretise:



If you discretise:

* Increase risk of finding nothing when there is something there
(1 false negatives)

* Increase risk of finding something if there is nothing there
(1 false positives)

* Risk choosing the wrong model



Supplementary message:

These findings apply to all continuous variables

[nothing special about training load]

Length, strength, weight, height, time, speed, angle, ...
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* Also examines issues with Modeling Training Loads and Injuries:
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ABSTRACT

CAREY, D. L., K. M. CROSSLEY, R. WHITELEY, A. MOSLER, K.-L. ONG, J. CROW, and M. E. MORRIS. Modeling Training
Loads and Injuries: The Dangers of Discretization. Med. Sci. Sports Exerc., Vol 50, No. 11, pp. 2267-2276, 2018, Purpose: To evaluate
commaon modeling strategies i training load and injury risk research when modeling continuous variables and interpreting continuous
risk estimates; and present improved modeling swrategies. Method: Workload data were pooled from Australian foothall (1 = 2550) and
soccer (1 = 23,742) populations to create a representative sample of acute:chronic workload ratio ohservations for team sports. Injuries
were simulated in the data using three predefined risk profiles (U-shaped, flat and 5-shaped). One-hundred data sets were simulated with
sample sizes of 1000 and 3000 observations. Discrete modeling methods were compared with contineous methods (spline regression and
tractional polynomials) for their ability to fit the defined nsk profiles. Models were evaluated using measures of discrimination {area
under receiver operator characteristic [ROC] curve) and calibration {Brer score, loganthmic scoring). Resulis: Discrete models were
inferior to continuous methods for fiting the true injury risk profiles in the data. Discrete methods had higher false discovery rates { 16%-21%6)
than contimuous methods (3% T%). Evaluating models using the area under the ROC curve mcormrectly identified discrete models as superior
inover 30% of simulations. Brier and loganthmic scoring was more suited 1o assessing mode] performance with less than 6% discrete model
selection rate. Conclusions: Many studies on the relationship between traming loads and injury that have used regression modeling have
significant lmitations due o improper discretization of continuous vanables and nisk estimates. Continuous methods are more suited to
masdeling the relationship between training load and imjury. Comparning injury risk models using ROC curves can bead to inferior model
selection. Measures of calibration are more informative judging the utility of injury rnsk models. Key Words: ACUTE:CHRONIC
WORKLOAD FATIO, INJURY RISK, ROC CURVES, CALIBRATIOMN
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